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The goal is to understand Einstein’s proof of the famous equation of rest energy of a body. I follow
the original paper by Einstein [1].

0.1 Postulates of Special relativity

The two main postulates of Special relativity are losely stated as

• The physical laws are invariant under transition from one inertial frame to another, which physically
means that conducting the same experiment in any inertial frame will yield the same results.

• There is an absolute constant 0 < c <∞ [speed of light], such that any signal traveling with speed c
with any given direction in a a given inertial frame, travels with the same speed in all other frames.

0.2 Deriving Lorentz transformation

Our goal in this section is to compute the transformation L : (x, y, z, t) 7→ (x′, y′, z′, t′) from orthogonal
coordinates of a frame F to that of another frame Fv moving with constant velocity vi with respect
to the F . First, from the first postulate of Special relativity together with First Newton’s law, this
transformation is linear. Indeed, by Newton’s first law, a body moving freely, moves in a straight line,
as this law is valid in F and Fv, then L should map straight lines to straight lines. Next, we can clearly
set the line of motion of the spatial origin of Fv as the x-axis in F and set the zero time to be the same
when the origins of F and Fv to coincide. We write the transformation as follows

x′

y′

z′

t′

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x
y
z
t


Now because motion is along x-axis only, by an isotopy argument (which follows from Einstein’s first
postulate), one can assume that the plane y = 0 maps to y′ = 0, and similarly z = 0 maps to z′ = 0. So,

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


a11 a12 a13 a14
0 1 0 0
0 0 1 0
a41 a42 a43 a44


Because Fv moves with velocity v along x−axis with respect to F , a similar isotopy argument implies
that the plane x = vt should map to x′ = 0. Hence a11v + a12, a13, a14 = 0, therefore

x′ = a11(x− vt) (1)

Now, we come to the next trick. Let F ′ and F ′v be the frames obtained by reversing x-axis, and z-axis
of F and Fv. Observe that the transformation of F ′v to F ′ is the same as that from F to Fv, that’s the
transformations above should be invariant under:

x↔ −x′ , y ↔ y′ , z ↔ −z′ , t↔ t′

Hence, using (1), we get

x = a11(x′ + vt′) (2)

It remains to determine a11. We note that from the second postulate, x = ct (the light signal in F )
should map to x′ = ct′ (The light signal in Fv). Substituting in (1), (2), we get

ct′ = a11(c− v)t
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ct = a11(c+ v)t′

Now multiplying these two equations, we obtain c2tt′ = a211(c2 − v2)tt′, hence

a11 =

(
1− v2

c2

)−1/2
we denote a11 = γ. Now solving (1) and (2) gives us

t′ = γ
(
t+

vx

c2

)
So the lorentz-transformations are

x′ = γ(x− vt) , y′ = y , z′ = z , t′ = γ
(
t+

vx

c2

)

0.3 Doppler effect.

Given a light wave in an inertial frame F , with frequency f . The frequency of the same wave as seen from
inertial frame is changed, we let it be denoted by f ′. There are many ways to calculate f ′, the simplest
in my opinion is the following. Let k = 2π

λ = 2πf
c be the wave number of the wave (here λ is the wave

length.) The wave may be described in frame F by sin(kx± 2πft), and in frame Fv by sin(k′x′− 2πft′),
then by comparing the arguments of sines and using Lorentz-transformations, we get

kx± 2πft = k′x′ ± 2πf ′t′ =⇒ kx± 2πft = k′γ(x− vt)± 2πf ′γ(t+
vx

c2
)

Hence comparing the coefficients of t, we get

±2πf = −k′γv ± 2πf ′γ =⇒ f = γ
(

1∓ v

c

)
f ′ (3)

Where the sign depends on the direction of the propagation of the wave.

0.4 The final step

Let a body of mass m be fixed at the origin point of frame F . Suppose it has a rest Energy E. Now
suppose that the body emits two photons of equal energies E+ = hf+ , E− = hf− in the opposite
direction (+x−axis and −x−axis respectively). After emmiting the two photons, suppose that the mass
of the body decreased by ∆m (which may be zero). Now due to conservation of energy the rest energy of
the body becomes E − (E+ + E−) = E −∆E. Suppose that a frame Fv moves in the positive direction
with velocity vi with respect to F . Now as seen from Fv, the photons have new energies (due to doppler
effect (3)):

E′+ = hf ′+ = hγ−1
(

1 +
v

c

)
f+ = γ−1

(
1 +

v

c

) ∆E
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and

E′− = hf ′− = hγ−1
(

1− v

c

)
f+ = γ−1

(
1− v

c

)
E− = γ−1

(
1− v

c

) ∆E

2

(the energies now are not equal any more). We observe that;

• When v << c, we know that Newtonian laws are valid at such low velocities, that’s the energy
before the emission of photons is :

E +
1

2
mv2 + ε(v/c), (4)

where ε(v/c)→ 0 at v/c→ 0

• The energy after the emission is:

(E −∆E) +
1

2
(m−∆m)v2 + E′+ + E′− (5)

= (E −∆E) +
1

2
(m−∆m)v2 + γ−1

(
1− v

c

) ∆E

2
+ γ−1

(
1 +

v

c

) ∆E

2
(6)



By Law of conservation of energies, we have (4) = (5), hence;

1

2
∆mv2 + ε(

v

c
) = (1− γ−1)∆E

Now taking v
c → 0, we get:

∆E = lim
v/c→0

v2

2(1− γ−1)
∆m

= lim
v/c→0

(v/c)2

2
(

1−
√

1− v2/c2
) (∆m)c2

= lim
v/c→0

1 +
√

1− v2/c2
2

(∆m)c2

= (∆m)c2
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